Dynamics of the Morse Oscillator: Analytical Expressions for Trajectories, Action-Angle Variables, and Chaotic Dynamics
نویسندگان
چکیده
منابع مشابه
Chaotic Dynamics of RLD Oscillator
Chaos is aperiodic behavior in deterministic nonlinear dynamical systems that is highly sensitive to initial conditions. Chaotic behavior can be observed in a simple electronic (RLD) circuit consisting of a resistor, diode, and inductor with an oscillatory voltage drive signal. The output voltage signal exhibits both stable periodic behavior and chaotic behavior, which are visualized by power s...
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
Dynamics of quantum trajectories in chaotic systems
– Quantum trajectories defined in the de Broglie–Bohm theory provide a causal way to interpret physical phenomena. In this Letter, we use this formalism to analyze the short time dynamics induced by unstable periodic orbits in a classically chaotic system, a situation in which scars are known to play a very important role. We find that the topologies of the quantum orbits are much more complica...
متن کاملChaotic dynamics and synchronization of fractional order PMSM system
In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme is simple and flexible, and it is suitable both fo...
متن کاملHamiltonian Description of Vlasov Dynamics: Action-Angle Variables for the Continuous Spectrum
The linear Vlasov-Poisson system for homogeneous, stable equilibria is solved by means of a novel integral transform that is a generalization of the Hilbert transform. The integral transform provides a means for describing the dynamics of the continuous spectrum that is well-known to occur in this system. The results are interpreted in the context of Hamiltonian systems theory, where it is show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Bifurcation and Chaos
سال: 2019
ISSN: 0218-1274,1793-6551
DOI: 10.1142/s0218127419501578